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Abstract
The climate sensitivity of global climate models (GCMs) strongly influences projected
climate change due to increased atmospheric carbon dioxide. Reasonably, the climate
sensitivity of a GCM may be expected to affect dynamically downscaled projections.
However, there has been little examination of the effect of the climate sensitivity of
GCMs on regional climate model (RCM) ensembles. Therefore, we present projections of
temperature and precipitation from the ensemble of projections produced as a part of the
North American branch of the international Coordinated Regional Downscaling Exper-
iment (NA-CORDEX) in the context of their relationship to the climate sensitivity of their
parent GCMs. NA-CORDEX simulations were produced at 50-km and 25-km resolutions
with multiple RCMs which downscaled multiple GCMs that spanned nearly the full range
of climate sensitivity available in the CMIP5 archive. We show that climate sensitivity is
a very important source of spread in the NA-CORDEX ensemble, particularly for
temperature. Temperature projections correlate with driving GCM climate sensitivity
annually and seasonally across North America not only at a continental scale but also
at a local-to-regional scale. Importantly, the spread in temperature projections would be
reduced if only low, mid, or high climate sensitivity simulations were considered, or if
only the ensemble mean were considered. Precipitation projections correlate with climate
sensitivity, but only at a continental scale during the cold season, due to the increasing
influence of other processes at finer scales. Additionally, it is shown that the RCMs do
alter the projection space sampled by their driving GCMs.
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1 Introduction

This study aims to examine the ensemble of projections produced as a part of the North
American branch of the international Coordinated Regional Downscaling Experiment (NA-
CORDEX) in the context of their relationship to the climate sensitivity of the global climate
models (GCMs) used as forcing for this regional climate model (RCM) ensemble. We present
basic projections for the most commonly used variables, near-surface temperature and precip-
itation, for North America and 30 sub-regions.

NA-CORDEX samples nearly the full range of climate sensitivity found in the Coupled
Model Intercomparison Program Phase 5 (CMIP5) archive. Climate sensitivity, a measure of
the global mean temperature response to an increase in CO2, has been shown to be an
important source of model uncertainty over large parts of the globe, and not just for near-
surface temperature (e.g., Mauritzen et al. 2017). In GCMs, it is often measured in terms of the
equilibrium (or “effective”) climate sensitivity (ECS), the global mean near-surface air tem-
perature response to a doubling of CO2 after equilibrium is reached, or as a GCM’s transient
climate response (TCR), the change in global mean temperature at the time CO2 reaches
double its initial concentration while increasing at 1% per year. Here, we focus on examining
the spread in the NA-CORDEX projections relative to TCR. Given the timeframe over which
TCR is calculated, it is more likely than ECS to explain the spread in GCM temperature
changes over the twenty-first century (Knutti et al. 2017), even if it is not the better fit with the
CMIP5 GCM projections when compared with ECS in the end (Grose et al. 2018). Also, the
distribution of climate sensitivities within the NA-CORDEX ensemble provides natural breaks
at low, mid, and high TCR and provides a better allocation of simulations across those
categories. We will briefly explore the consequences of this choice.

Why examine the projections from NA-CORDEX in the context of climate sensitivity? We
have two main reasons: one being that it is very relevant from a dataset user perspective and
the second being that its effect on projection spread has not been examined before with RCM
projections (to the best of our knowledge).

Expanding on these points, first, within a given emission scenario, uncertainty in projected
changes at a continental and centennial scale is largely due to climate sensitivity, and at smaller
spatial scales to regional processes (Grose et al. 2017; Sutton et al. 2015). However, we may
not know for a long time what the actual climate sensitivity of the planet is, including whether
or not it will fall on the high end, low end, or somewhere in between, given that it encompasses
many long-term feedback processes (Mauritzen et al. 2017). Combined with its previously
unexplored but assumed effect on the spread in regional climate projections, presenting the
projections relative to their driving GCM climate sensitivity should provide a sense of how
uncertainty in climate sensitivity affects the RCM projection spread. In addition, it suggests
how to leverage that spread if a user cannot apply all of the simulations and must choose only a
few. Model spread may be constrained if only a low-, mid-, or high-range TCR subset of
simulations is chosen, or if only the ensemble mean is chosen. And, different parts of the
spectrum may suggest different levels of impacts and necessary adaptation measures, the
credibility of the simulations notwithstanding.

Second, climate sensitivity has often been discussed as an uncertainty that should be
spanned when selecting models for downscaling (e.g., Christensen and Christensen 2007;
Liang et al. 2008; Evans et al. 2014; Mearns et al. 2015), but RCM results have not yet been
examined in this context, despite the fact that some RCM ensembles do exist now that
encompass this uncertainty. For instance, in Kjellström et al. (2016), it was concluded that
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their single European RCM ensemble did represent the spread in TCR across the CMIP5
ensemble because the GCMs chosen spanned it, but the RCM results were not examined in
that context. Similarly, with a limited, early release set of some of the 50 km NA-CORDEX
simulations that did span the full range of climate sensitivity in CMIP5, Karmalkar (2018)
examined and discussed climate sensitivity, but only explicitly in the context of the driving
GCM temperature projections (not the RCM projections). It was concluded that the GCM
temperature projections did not scale well with ECS over a set of large sub-continental scale
regions for analysis and given a mid-century period of examination only.

In the end, NA-CORDEX is an ensemble of opportunity, with GCMs selected for down-
scaling partly based on their country or institute of origin, the quality of a GCM’s simulation
for a region or an important climate phenomenon, with some coordination among modelers,
and with some intention to span GCM climate sensitivity with at least a couple of RCMs,
among other potential factors. Therefore, in addition to examining the ensemble’s projections
in relation to their driving GCM climate sensitivity, we will also briefly compare its projections
of North American precipitation and temperature to those from the larger CMIP5 ensemble, to
assess the representativeness of the spread at a large scale. Furthermore, we also present a
comparison of the NA-CORDEX projection spread relative to climate sensitivity with that
from its precursor, the North American Regional Climate Change Assessment Program
(NARCCAP; Mearns et al. 2012, 2013). CMIP3 climate sensitivity was not well sampled in
NARCCAP, and this was a known issue from the start (Mearns et al. 2015). Therefore, it is
worth examining what is gained in terms of spread and sampling between the two ensembles.
Finally, we note that, in this assessment of NA-CORDEX, we are not assessing the credibility
of the simulations in any way. While we encourage in-depth, process-level analysis, it is
beyond the scope of this overview of the projections.

2 Simulations and methods

2.1 Simulations

2.1.1 NA-CORDEX

This study includes all of the GCM-driven simulations available in the NA-CORDEX archive
as of the time of writing (Mearns et al. 2017) and focuses only on simulations that used
Representative Concentration Pathway 8.5 for future projections (RCP8.5; Moss et al. 2010).
These simulations come from seven different RCMs (Table 1), forced by seven different
CMIP5 GCMs (Table 2), at two different resolutions (25 km and 50 km), for a total of 27
simulations (Table 3). Note that all simulations used ensemble member r1i1p1 of their
respective GCM simulations, except for those forced by EC-EARTH. The RCA4 simulation
downscaled r12i1p1 of EC-EARTH, while the HIRHAM5 downscaled r3i1p1. As the differ-
ences between the two ensemble members are insignificant on the temporal and spatial scales
addressed in this analysis (Supplementary Fig. S1), only member r12i1p1 is shown.

While projections using RCPs 4.5 and 2.6 also exist in the NA-CORDEX archive, the
number of simulations is much smaller and, therefore, less suitable for this analysis.

The GCMs used to force the RCMs in this ensemble span almost the full range of climate
sensitivity in the CMIP5 archive. The CMIP5 TCR ranges from 1.1 to 2.6 °C, with an
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ensemble mean of 1.8 °C, and the ECS ranges from 2.1 to 4.7 °C, with an ensemble mean of
3.2 °C, similar to that of CMIP3 (Flato et al. 2014). In the GCMs downscaled in NA-
CORDEX, the TCR (ECS) ranges from 1.3 °C (2.4 °C) to 2.5 °C (4.6 °C), and the average
across the 27 NA-CORDEX simulations in Table 3 is 2.0 °C (3.5 °C).

The RCM simulations were completed across an approximately 150-year timeslice, from
about 1950 to 2100 (start and end years vary some by simulation). Full RCM configurations
are available on the NA-CORDEX website (https://na-cordex.org/rcm-characteristics). Note
that there are two slightly different configurations of the CRCM5 contributed by two different
institutions (Table 1). When discussed collectively, when their results are similar, we will refer
to the OCRCM5 and the QCRCM5 as just the CRCM5. Similarly, when referring to the MPI-
ESM-LR and the MPI-ESM-MR GCMs collectively, we will refer to just the MPI-ESM.

Table 1 Regional climate models used in this analysis

Acronym Model name Contributing institution(s) Major reference(s)

1 CanRCM4 Canadian Regional Climate
Model version 4

Canadian Centre for Climate
Modelling and Analysis
(CCCma)

Scinocca et al. 2016

2 HIRHAM5 High-Resolution Limited
Area Model with ECHAM
physics, version 5

Danish Meteorological Institute
(DMI)

Christensen et al. 2007

3 OCRCM5 Canadian Regional Climate
Model (CRCM) version 5

Ouranos Zadra et al. 2008;
Martynov et al. 2013;
Šeparović et al. 2013

4 QCRCM5 Canadian Regional Climate
Model (CRCM) version 5

Université du Québec à Montréal
(UQAM)

Zadra et al. 2008;
Martynov et al. 2013;
Šeparović et al. 2013

5 RCA4 Rossby Centre regional
atmospheric model version
4

Swedish Meteorological and
Hydrological Institute (SMHI)

Samuelsson et al. 2011

6 RegCM4 Regional Climate Model
version 4

Iowa State University and the
National Center for
Atmospheric Research (NCAR)

Giorgi and Anyah 2012

7 WRF Weather Research and
Forecasting model

University of Arizona and NCAR Skamarock et al. 2005

Table 2 Dynamically downscaled CMIP5 GCMs. The global change column provides the global average,
annual mean temperature change from 1951–1999 to 2051–2099

Model Modeling center Atmosphere
resolution (latitude
× longitude)

ECS
(°C)

TCR
(°C)

Global
change
(°C)

1 GFDL-ESM2M National Oceanic and Atmospheric
Administration/Geophysical Fluid Dy-
namics Laboratory

2.0225° × 2.5° 2.4 1.3 2.4

2 EC-EARTH Swedish Meteorological and Hydrological
Institute

1.1215° × 1.1.125° ~ 3.3 2 3.1

3 MPI-ESM-MR Max Planck Institute for Meteorology 1.8653° × 1.875° 3.4 2 3.2
4 MPI-ESM-LR Max Planck Institute for Meteorology 1.8653° × 1.875° 3.6 2 3.2
5 CNRM-CM5 Centre National de Recherches

Meteorologiques
1.4008° × 1.40625° 3.3 2.1 3.0

6 CanESM2 Canadian Centre for Climate 2.79° × 2.81° 3.7 2.4 4.1
7 HadGEM2-ES Met Office Hadley Centre 1.25° × 1.875° 4.6 2.5 4.1
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2.1.2 NARCCAP

For comparative purposes, we also briefly examine the simulations from NARCCAP (Mearns
et al. 2007, 2009), the precursor to NA-CORDEX. These include simulations by six different

Table 3 Full list of simulations, ordered from top-to-bottom first by TCR, then within TCR by ECS, then RCM
name, and then by resolution. Horizontal dividing lines denote different TCRs (solid) and within a given TCR,
ECS (dashed lines), except within the Ensemble Means, which are grouped together. A different color is assigned
for each RCM and resolution. Color and order are used in later box-and-whisker plots
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RCMs forced by four different CMIP3-era GCMs. Simulations are approximately 30 years
long, and the future, mid-century period of simulation uses the A2 SRES scenario
(Nakićenović et al. 2000). Of the four GCMs used in NARCCAP, GFDL-CM2.1, HadCM3,
CCSM3, and CGCM3.1, the TCR (ECS) ranged from 1.5 to 2.0 °C (2.7 to 3.4 °C). In
NARCCAP, each RCM systematically downscaled two of the GCMs for a total of 12
simulations. Additional details can be found in Mearns et al. (2012).

2.2 Methods

In this analysis, we focus on broad timescale annual mean changes, but also include
seasonal changes for December–February (DJF, winter), March–May (MAM, spring),
June–August (JJA, summer), and September–November (SON, autumn). Mean chang-
es are defined as being from the historical period of 1951–1999 to the future period
of 2051–2099. Not all simulations produced years 1950 or 2100, hence the odd start
and end years for the analysis. This approximately 50-year period is used for
averaging so to better avoid internal variability signals, and because it is more
relevant than shorter periods given the timescale over which the feedbacks
encompassed by climate sensitivity act. These include feedbacks related to water
vapor, clouds, lapse-rate, ice and albedo, and the carbon cycle.

While domain averages are taken over the largest region common to all of the
RCMs as defined by latitude/longitude corners, the analysis is completed using the
native RCM grids/projections to avoid errors caused by interpolation, particularly in
areas of complex orography when examining grid-box level projections across regions;
therefore, there are some slight differences in analysis regions. The GCM analysis
domains are set using the same latitude/longitude corners, but to provide a better
match to the RCM analysis domain given the very different map projections and grids
between the RCMs and GCMs, these corners are connected using bounds that follow
great circle arcs instead of strict lines of latitude/longitude. Ensemble means for the
25 km and 50 km simulations are produced using the data in the public NA-
CORDEX archive that have been interpolated to a common quarter/half-degree
latitude/longitude grid, respectively. The GCMs were interpolated to a 1° × 1° lati-
tude × longitude grid for ensemble averaging. Area averages are grid-cell area-
weighted.

For a brief comparison of the NA-CORDEX simulations with those from
NARCCAP, the same analysis region is used, but the analysis time period is adjusted
to those years available from all of the NARCCAP simulations, namely, 1971–1998
and 2041–2068.

Part of the analysis is completed over sub-regions of North America, as defined in
Fig. 1. For more information on these regions, see Bukovsky (2011). Analysis using these
regions is only completed for the RCM simulations and not the driving GCMs, as the
GCMs are too coarse in resolution. The regional analysis uses box-and-whisker plots that
represent values across all of the grid-boxes in a region, where the box ends are defined
as the quartiles, the horizontal line in the box is the median, and the whiskers are 3/2
times the interquartile range. As the regions do vary in size, variability in the box-and-
whisker plots across regions is likely affected by the number of grid boxes within a
region, as well as the amount of orographic variability within a region and the differences
in the north-south or east-west extent represented.
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3 Results

3.1 Near-surface temperature

Annually, domain-mean temperature projections from the last half of the twentieth century to
the last half of the twenty-first century range from about 2.8 to 5.6 °C in the RCMs and 3.0 to
5.8 °C in the driving GCMs (Fig. 2). These broad changes do vary some seasonally, ranging
from 2.6–5.2 °C (2.6–5.0 °C) in the summer to 3.2–6.8 °C (3.6–7.1 °C) in the winter in the
RCMs (driving GCMs). There is very little difference between the two resolutions of RCM
simulations at these broad space and time scales regardless of season. Consistent with many
previous projections of North American temperature, warming is greater in the north than in
the south, particularly in the annual mean and in winter, and to some extent in the shoulder
seasons (Figs. 3 and 4a; Supplementary Figs. S3–S10). In summer, warming is often greatest
over interior western North America, sometimes in conjunction with high warming in the
Arctic. The pattern of large-scale seasonal change across the domain is also broadly similar
between most RCM simulations and their driving GCMs. Additionally, the ensemble spread in
projected warming in any given region generally increases from warmer to cooler regional
climates, regardless of season (Figs. 5; Supplementary Figs. S11–S14).

It is clear from Fig. 2 that spanning GCM climate sensitivity in a regional model ensemble
is important for capturing that uncertainty and for expanding the ensemble spread in temper-
ature in a representative manner, as the projections across the domain from the RCMs are
strongly related to driving GCM TCR. Temperature change is about 1.3 to 2.1 °C per degree of
TCR across all seasons in the RCMs and about 2.0 to 2.7 °C per degree of TCR in their driving
GCMs, with the greatest rates of change with TCR in winter. The slightly greater rate of
warming per degree of TCR in the GCMs is largely due to the HadGEM2-ES consistently
projecting somewhat larger increases in domain-mean temperature than its child RCMs, which

Fig. 1 Regions used in this study
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may be due to the greater increases in temperature projected in the Arctic in the GCM (c.f.
Figs. 3 and 4).

From Fig. 2a, it also appears that, coincidentally, the GCMs downscaled from the CMIP5
set may be on the slightly cooler side of the full range of possible North American warming at
any given TCR range. The downscaled GCMs do, however, represent nearly the full range of
possible temperature responses across CMIP5. And, also coincidentally, the smaller set of
downscaled GCMs have projections for North American annual temperature change that
correlate more closely with TCR than the larger CMIP5 ensemble. The coefficient of deter-
mination (R2) value for the full set of 28 CMIP5 simulations in Fig. 2a is on par with that found

Fig. 2 1951–1999 versus 2051–2099 change in temperature (tas, left column, °C) and percent change in
precipitation (pr, right column, %) over the NA-CORDEX domain (illustrated in Figs. 3 and 4) across the year
(ANN) and the four seasons (DJF, MAM, JJA, SON) versus TCR (°C), for the 25-km and 50-km NA-CORDEX
RCMs, their driving GCMs, and in panels a and b only, a 28-member CMIP5 ensemble (including the driving
GCMs)
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Fig. 3 1951–1999 versus 2051–2099 annual mean change in temperature (top label bar, °C) from the RCM
simulations. Panel borders are shaded given the TCR of the driving GCM (bottom label bar, °C). Panels are
ordered from left to right and top to bottom by the degree of domain-mean change (given at the upper right of
each panel)
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in Grose et al. (2018) for a 24-member CMIP5, RCP8.5 ensemble over North America (the
CMIP5 simulations used here are listed in Supplementary Table S1). Moreover, Grose et al.
(2018) found that ECS correlated better with CMIP5 temperature change globally and over
North America than TCR, an unexpected result as the analysis timeframe suggested that TCR
would be the more relevant metric. However, in the downscaled subset of CMIP5 runs, the
temperature change correlations with climate sensitivity are similar for both TCR and ECS.
The R2 values are slightly higher with driving GCMs (by about 0.06) and slightly lower in the
25 km and 50 km RCM sets (by about 0.08 or 0.11, respectively) using ECS compared with

Fig. 4 From the driving GCMs, 1951–1999 versus 2051–2099, a annual mean change in temperature (top two
rows, °C) and b percent change in precipitation (bottom two rows, %). Panel borders are shaded given the TCR
of the driving GCM (bottom label bar, °C). Panels are ordered from left to right and top to bottom by the degree
of domain-mean change (given at the upper right of each panel)
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those given in Fig. 2a using TCR (Supplementary Fig. S2). The better fit of the RCM projected
annual mean change with TCR appears to be largely due to the warmer high TCR but mid-

Fig. 5 1951–1999 versus 2051–2099 regional, annual mean change in temperature (y-axis, °C) versus driving
GCM TCR (x-axis, °C, groupings by TCR are indicated by alternating gray and white background shading, with
the ensemble means in their own group indicated by “ENS”). Each box-and-whisker represents the projection
from every grid box in a given region for a different simulation (colored by RCM and resolution, as defined in
Table 3)

Climatic Change (2020) 162:645–665 655



range ECS CanESM2-driven projections relating better to a high TCR than a mid-range ECS
over this timeframe.

Overall, RCM temperature projections cluster together like the TCR values in the ensemble,
with general low-, mid-, and high-range projections and values. This is generally confirmed in
spatial maps of the mean temperature change from all ensemble members, strategically
arranged by the degree of change with panel borders colored by TCR, in Figs. 3 and 4a for
annual mean change and seasonally in Supplementary Figs. S3–S10. Annual mean tempera-
ture changes projected by the lowest TCR GCM, the GFDL-ESM2M, and child RCM
simulations, often have the lowest overall temperature increases. However, while the projec-
tions from RegCM4+GFDL-ESM2M simulations closely resemble their parent GCM across
the domain, the OCRCM5 and WRF simulations driven by the GFDL-ESM2M produce more
warming over the center of the continent and Arctic compared with the GCM and RegCM4,
placing them at the warm end of the low TCR simulations. In winter, the WRF+GFDL-
ESM2M simulations in particular are considerably warmer as well, and so much so that they
are in the mix with the mid-range TCR simulations (Supplementary Fig. S3). The same is true
in the OCRCM5 in spring and autumn, but not true in summer (Supplementary Figs. S5, S7,
and S9). The HIRHAM5+EC-EARTH simulation produces less annual mean warming by
around a degree in many places compared with the corresponding GCM simulations or the
RCA4+EC-EARTH simulation, making it the coolest mid-range TCR projection, and compa-
rable with the GFDL-ESM2M-driven simulations in magnitude. While this could be due to the
use of different EC-EARTH ensemble members, those differences are small; hence, it is more
likely due to the differences in the RCMs (Supplementary Fig. S1).

In the mid-range TCR simulations, the annual mean change in OCRCM5+CNRM-CM5 and
the GCM itself is slightly less than that in the various MPI-ESM simulations, despite a slightly
higher TCR (but lower ECS). This appears to be from less warming in the southern part of the
continent. Additionally, the multiple MPI-ESM downscaled simulations (9 total from 4 RCMs)
increase the range in the projections over the two GCMs alone by only a few tenths of a degree.

In the high-end TCR simulations, those driven by the CanESM2 and HadGEM2-ES, the
additional warming is clearly spread across the domain and not limited to any one region (Figs.
3 and 4a). A notable difference occurs in the CRCM5 simulations versus their CanESM2
driver, as the RCMs spread a high degree of warming further south, projecting more warming
than their corresponding GCM over Mexico.

All ensemble mean temperature projections (RCM or GCM) are similar to mid-range TCR
simulations, though situated at the high end of the domain-mean change spectrum relative to
the other mid-range TCR simulations.

As the RegCM4 and WRF simulations share drivers across the low, mid, and high TCR
GCMs, they provide a good sub-sample for intercomparison. Annually, and in almost all
seasons (Figs. 3 and 4a; Supplementary Figs. S3–S10), these simulations fully span the NA-
CORDEX ensemble spread, with the RegCM4+GFDL-ESM2M always providing the coolest
projections and the WRF+HadGEM2-ES always providing the warmest, except in summer
where the OCRCM5+CanESM2 is warmest. Domain-mean temperature change in WRF is
also always warmer than RegCM4. We suspect that this is at least partly due to differences in
sea ice treatment between the simulations, as an early WRF+MPI-ESM-LR simulation
accidentally completed without sea ice as a lower boundary condition and, instead with sea-
surface temperatures assigned using the skin temperature of the atmosphere as in RegCM4,
had a temperature change field that was closer spatially and in the domain-mean to that from
RegCM4 (not shown). If it was not for that simulation giving us a clue to the cause of this
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consistent difference, it could be due to one of many other differences in the configuration of
these RCMs, as they otherwise contain few similarities beyond resolution and domain.

While the temperature projections from a domain-mean perspective increase with increas-
ing TCR, this relationship is more subtle to non-existent in some regions/seasons, while it is
quite obvious in others. To demonstrate this, near-surface temperature projections for every
region (Fig. 1) and RCM simulation are provided in Fig. 5 for annual mean change and
Supplementary Figs. S11–S14 for seasonal mean changes. Overall, greater increases in
temperature projections with increasing TCR occur in cooler climates. However, even in
warmer climates, there is usually a distinct separation between the warmer projections from
the high-end TCR simulations (the CanESM2 and HadGEM2-ES forced simulations) and the
rest of the simulations, even if there is no distinct separation between the low- and mid-range
TCR simulations. Additionally, the mid-range TCR-like ensemble means are not representa-
tive of the range of projections from all of the simulations. While a relationship between
regional to local temperature projections and TCR of the driving GCM does exist nearly
everywhere, there are often outliers and/or interesting RCM- and/or GCM-related effects that
become more obvious regionally. The two EC-EARTH-driven simulations, for example, are
often very different from each other, and sometimes the other simulations (e.g., Fig. 5b, s), and
not just those with a similar mid-range TCR. Additionally, it is clear here that WRF is not only
often warmer than the RegCM4; it often has more intra-region spread as well, which is
particularly apparent in winter. In summer, a difference by RCM and GCM is also more
apparent than in the other seasons, creating an upward trending waviness in the plots from low-
to-high TCR, as both flavors of CRCM5 are warmer than RegCM4 and WRF when forced by
either flavor of MPI-ESM, and the CanESM2-driven runs are warmer than the HadGEM2-ES-
driven runs in many regions. Some of the other RCM outliers that are region- or season-
specific, like the HIRHAM5-EC-EARTH over the Great Lakes in any season (Fig. 5m or
Supplementary Figs. S11m–S14m), or WRF in winter, particularly in regions like the South-
east (Supplementary Fig. S11x), should be subject to further scrutiny to determine why the
projections are strong outliers before use.

3.2 Precipitation

Annually, domain-mean precipitation projections from the last half of the twentieth century to
the last half of the twenty-first century range from about 3.0 to 16.9% in the RCMs and 6.1 to
11.6% in their driving GCMs (Fig. 2b). These continental-scale changes do vary considerably,
though, seasonally, ranging from − 13.4–21.0% (− 5.5–8.4%) in summer to 7.3–28.4% (8.0–
26.5%) in winter in the RCMs (driving GCMs), with considerably more variation regionally.
Generally, the pattern of precipitation change seen in winter and the shoulder seasons across
the continent is reflected in the annual mean, with increases in precipitation projected for
Canada and most of the USA, with decreases projected in many simulations for Mexico
(Figs. 6, 7, and 4b; Supplementary Figs. S15–S26). In winter and especially spring, there is a
general agreement for decreases in precipitation over the Southwest, Mezquital, and nearby
Pacific Ocean area (Supplementary Figs. S23u, v, and S15). In winter, all RCM simulations
except those driven by the GFDL-ESM2M project an increase in precipitation for the eastern
slopes of the larger, resolved mountain ranges in western Canada, with no change to decreases
in precipitation projected on the western slopes. The same is true across the Western US in all
RCM simulations except those driven by the GFDL-ESM2M and CanESM2, and except over
California (Supplementary Fig. S15). This is not clearly represented in the coarser resolution
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GCM drivers (Supplementary Fig. S16). In summer, there is consistent inconsistency within
regions and across the ensemble in the sign of the precipitation projections (Supplementary
Figs. S19, S20, and S25). There is a tendency for drying in the Southwest and in the South
Rockies in summer, but this is not projected by all of the simulations, particularly the CanESM-
driven simulations, which, like their driving GCM, project an odd, strong increase in precip-
itation that appears to grow out of the Gulf of California (as also discussed in Colorado-Ruiz
et al. 2018). Elsewhere, the CanESM-driven simulations often disagree on the sign of precip-
itation change, with more widespread drying projected by the CRCM5 than the CanRCM4
simulations or the CanESM itself. Furthermore, the RCMs driven by the HadGEM2-ES project
much less widespread drying across the USA than their driving GCM in summer. Overall, as
with temperature, there is very little difference between the two resolutions of RCM simulations
at the space and time scales examined here, regardless of season.

As with temperature, domain average annual, winter, spring, and autumn precipitation
change increases with increasing TCR (Fig. 2), but the relationship in the RCMs is not as
strong as it is for temperature, except in winter. In winter, the percent increase in precipitation
is about 15.0% per degree of TCR in the driving GCMs and 9.2–10.6% per degree of TCR in
the RCMs, with R2 values on par with those for temperature. Outside of winter, the CRCM5+
CanESM2 simulations produce less of a domain-mean precipitation increase in the future,
mostly due to strong drying in the Southwestern part of the domain than is present in the
CanESM2, but exacerbated by the CRCM5s (Figs. 6 and 4b; Supplementary Figs. S15–S22),
likely contributing in part to the lower change per degree of TCR and the lower R2 values
outside of winter in Fig. 2. In comparison, the percent change per degree of TCR in the annual
average is 4.4 in the driving GCMs and about 2.8–4.3 in the RCMs.

Given Fig. 2b, the GCMs downscaled in NA-CORDEX cover a range that is representative
of the full set of CMIP5 projections. And, as with temperature, the smaller set of downscaled
GCMs coincidentally correlates better with TCR than the full set.

In general, the examination of Figs. 7 and 4b and Supplementary Figs. S15–S22 suggests
that the relationship between continental precipitation change and TCR in Fig. 2 may be
coincidental, as it is difficult to spot any region where the relationship appears to hold.
However, at the continental-to-global scale, and given the long-term averages, the strong
relationship between larger precipitation increases with increasing TCR/temperature in winter,
and the weaker relationship in the shoulder seasons, is likely related to the water-holding
capacity of the atmosphere in cold weather being less limited as the temperature warms,
particularly at latitudes north of about 40°, which make up more than half of the domain (e.g.,
Trenberth et al. 2007). Outside of the cold season and at sub-continental scales, changes in
numerous other processes like circulation, land-atmosphere coupling, or land-ocean tempera-
ture contrast, even at the broad space and time-averaged scales used in Fig. 2, are likely in
competition, particularly in summer.

Additionally, as Figs. 6 and 4b and Supplementary Figs. S15–S22 suggest, and as Fig. 7
and Figs. S23–S26 confirm, the change versus TCR relationship breaks down completely at
the regional-to-local scale. There is no sub-region over which precipitation change is clearly
related to TCR. Too many factors are clearly in competition at local-to-regional scales, even in
the poleward regions. The effect of the different RCMs combined with the different GCMs
(i.e., model uncertainty) more distinctly increases the projection spread across each region than
the different TCR levels themselves.
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The ensemble means in Figs. 4b, 6, and 7 and Supplementary Figs. S15–S26 perform as
expected. They generally produce a middle-of-the-road projection regionally or in the full domain-
mean, and they diminish any regional maxima/minima projected in the individual simulations.

Fig. 6 As in Fig. 3, but for the percent change in annual mean precipitation from the RCMs
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3.3 NA-CORDEX vs. NARCCAP

For a brief comparison of the projection spread in NA-CORDEX versus that from NARCCAP,
annual, domain-mean mid-century projections from the two ensembles are shown in Fig. 8 a
and b. While the total number of simulations in each ensemble differs, the narrower range of
climate sensitivity sampled across the 12 NARCCAP simulations clearly affects the spread in

Fig. 7 As in Fig. 5, but for the percent change in annual mean precipitation (y-axis, %)
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their projections. The temperature projection space is greater by about 0.9 °C (or 90%) in the
annual mean in the NA-CORDEX ensemble, and this difference is mostly attributable to the
addition of the high TCR simulations. In fact, using just 2 RCMs in NA-CORDEX driven by
GCMs that span the full range of TCR in CMIP5 provides a greater spread than the 6 RCMs
with 4 different GCMs in NARCCAP. The RegCM4+GFDL-ESM2M produces the coolest
projection and the WRF+HadGEM2-ES produces the warmest in NA-CORDEX. Similarly,
considering just one of those two RCMs at either resolution (RegCM4 or WRF) provides
about 0.4–0.6 °C more spread in the annual domain-mean projections than the full NARCCAP
ensemble. However, we only mention this to illustrate the effect of climate sensitivity on the
ensemble, and we do not advise using only one or two simulations!

Similarly, the spread in the annual mean precipitation projections is greater in NA-
CORDEX compared with that in NARCCAP (Fig. 8b), but not to the same extent as with
temperature. The NA-CORDEX ensemble projection space is about 2.9% wider though, an
increase in spread of about 40% over that from NARCCAP. That spread, again, is mostly
attributable to the same 2 RCM simulations (the only two RCMs with simulations that span the
full TCR space): RegCM4+GFDL-ESM2M on the low end and WRF-HadGEM2-ES on the
high end, although the same spread is almost produced with other RCM+GCM combinations
in the case of precipitation.

4 Summary

Temperature and precipitation projections from 27 NA-CORDEX RCM simulations were
assessed in the context of the TCR of their driving GCMs. We found that spanning the range
of available climate sensitivities in the CMIP5 ensemble is important for producing a repre-
sentative range of projections in downscaled results. Temperature change does increase with

Fig. 8 Top: 1971–1999 versus 2041–2069 annual mean a change in temperature (°C) and b percent change in
precipitation (%) over the full common domain versus TCR (°C) from the NA-CORDEX and NARCCAP RCM
simulations. Bottom: comparison of domain-mean, annual c change in temperature (°C) and d percent change in
precipitation (%) projections across different timeslices for the NA-CORDEX RCMs. 50 years (as in Fig. 2):
1951–1999 versus 2051–2099. Mid-century: 1971–1999 versus 2041–2069. Late-century: 1971–1999 versus
2071–2099
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increasing TCR at a local-to-regional-to-continental scale with increasing fidelity at larger
scales, annually and seasonally, in most regions. While precipitation projections do increase in
magnitude with increasing TCR annually and in the cold season at a domain-mean scale, this
relationship is not maintained at a local-to-regional scale, due to the increasing influence of
local-to-regional process changes at those scales. The continental scale relationship between
TCR and precipitation agrees with that found in Mauritzen et al. (2017) in the CMIP5 GCMs.

It was also noted that the domain-mean degree of increase in temperature with increasing
TCR is similar in the RCMs and their corresponding GCMs. The degree of spread across the
domain-mean temperature projections in NA-CORDEX is also very similar to that from their
driving GCMs (at about 2.8 °C in the annual mean), but slightly less than the full CMIP5
ensemble (which is about 3.1 °C in the annual mean). The spread in annual domain-mean
precipitation projections from NA-CORDEX, however, is greater than that from their driving
GCMs (by about 8.5%) and closer to that from the full CMIP5 ensemble but shifted to lower
magnitudes of change. Additionally, temperature projections do cluster around the low, mid,
and high categories of TCR represented in the NA-CORDEX ensemble. And, the range of
spread in the ensemble would be reduced if only considering one category of climate
sensitivity, or an ensemble mean. This holds in many regions, not just at the continental scale,
and therefore is important to note in choosing simulations for impacts and adaptation studies.
This does not, however, apply to precipitation, except in the cold season for the full domain
average. However, the ensemble mean does regionally reduce the range of potential changes.

The above conclusions apply even if shorter (e.g., 30-year long) analysis periods or different
future timeslices (e.g., mid-twenty-first century or late-twenty-first century) are used. This is
summarized in Fig. 8c and d for the RCMs. However, similar spatial projection plots to those
contained in this analysis but for themid-century and late-century periods used in Fig. 8c and d are
available for consideration in the NA-CORDEX plot archive (Rendfrey et al. 2018), and regional
box-and-whisker plots matching those analyzed herein but for the mid-century and late-century
periods used in Fig. 8c and d are available in the Supplementary Material (Figs. S27–S46). While
similar when using different timeslices, the degree of increase in temperature change with TCR is
slightly greater later in the twenty-first century than in mid-century or in the 50-year mean.

These conclusions are further confirmed by the limited range and clustering of the
temperature changes projected by the NARCCAP simulations, which do not sample a broad
range of GCM climate sensitivities. There is less spread in annual temperature and precipita-
tion projections from the six different NARCCAP RCMs that use four different GCMs in
comparison to just the two NA-CORDEX RCMs that use three GCMs that span low-to-high
climate sensitivities. This suggests that sampling across GCM climate sensitivities is very
important when creating a representative RCM ensemble. These two RCM examples are not
meant to diminish the importance of using a diverse set of RCMs though, as model internal
variability becomes more important at smaller spatial scales (Hawkins and Sutton 2009), as
suggested herein in the regional projections.

5 Discussion

While the relationship presented between GCM TCR and the RCM projections may not be
surprising, we believe this is the first time it has been assessed in an RCM ensemble. We
recommend that the sensitivity of RCMs to climate sensitivity be examined in other CORDEX
ensembles (e.g., CORDEX-CORE), or in other applicable RCM ensembles, to determine if
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there is a generally specific sensitivity to individual RCMs for specific configurations of those
RCMs regardless of region. Here, it is interesting that WRF always projects more warming
than RegCM4 with the same GCM drivers in a consistent manner, suggesting that a given
configuration of an RCM may have a specific, assignable sensitivity as well. However, our
sample is not large enough to confirm this. If true, it may be possible to intentionally expand
on sampled uncertainty by strategically selecting different RCM+GCM combinations.

Herein, we have also only examined precipitation and temperature projections. But, the
relationship between the projection magnitude and climate sensitivity likely applies to other
variables. Particularly those that are closely related to temperature, like precipitation intensity
or snow, in regions where changes are dominated by temperature change and not precipitation
change.

As a caveat to the projection spread in the ensembles examined here, we note that the range
of climate sensitivity represented in CMIP5 and therefore in the NA-CORDEX ensemble is
less than that judged as “likely” in the 5th IPCC assessment report (IPCC 2013), implying that
the range of likely projections may be under-estimated here (Grose et al. 2017). Climate
emission/concentration scenario notwithstanding, of course, as it is still likely the most
important uncertainty later in the twenty-first century (Hawkins and Sutton 2009).

Finally, in CMIP6, the high-end climate sensitivity in the ensemble has increased outside of
the 5th IPCC assessment report’s “likely” range, leading to greater future warming projections
in those high-end climate sensitivity simulations (e.g., Gettelman et al. 2019). This has
implications for downscaling, as it will similarly increase projections of warming and ensem-
ble spread in any downscaled ensemble that spans the full range of CMIP6 climate sensitivity,
among other possible potential effects (e.g., perhaps more unstable simulations towards the
end of the twenty-first century), to be discovered in future efforts.
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