This bibliography contains all known publications citing the NA-CORDEX as of August 2023, as well as the citations for the dataset itself and related datasets and data products. The section headers are links to saved versions on Zoterobib.
Aryal, Y., & Zhu, J. (2020). Multimodel ensemble projection of meteorological drought scenarios and connection with climate based on spectral analysis. International Journal of Climatology, 40(7), 3360–3379. https://doi.org/10.1002/joc.6402
Aryal, Y., & Zhu, J. (2021). Evaluating the performance of regional climate models to simulate the US drought and its connection with El Nino Southern Oscillation. Theoretical and Applied Climatology, 145(3–4), 1259–1273. https://doi.org/10.1007/s00704-021-03704-y
Ayers, J. R., Villarini, G., Schilling, K., & Jones, C. (2021). Projected changes in monthly baseflow across the U.S. Midwest. International Journal of Climatology, 41(12), 5536–5549. https://doi.org/10.1002/joc.7140
Bhattarai, S., Parajuli, P. B., & To, F. (2023). Comparison of flood frequency at different climatic scenarios in forested coastal watersheds. Climate, 11(2), 41. https://doi.org/10.3390/cli11020041
Bukovsky, M. S., Gao, J., Mearns, L. O., & O’Neill, B. C. (2021). SSP‐based land‐use change scenarios: A critical uncertainty in future regional climate change projections. Earth’s Future, 9(3), e2020EF001782. https://doi.org/10.1029/2020EF001782
Bukovsky, M. S., & Mearns, L. O. (2020). Regional climate change projections from NA-CORDEX and their relation to climate sensitivity. Climatic Change, 162(2), 645–665. https://doi.org/10.1007/s10584-020-02835-x
Campbell, J. L., Driscoll, C. T., Jones, J. A., Boose, E. R., Dugan, H. A., Groffman, P. M., Jackson, C. R., Jones, J. B., Juday, G. P., Lottig, N. R., Penaluna, B. E., Ruess, R. W., Suding, K., Thompson, J. R., & Zimmerman, J. K. (2022). Forest and freshwater ecosystem responses to climate change and variability at US LTER sites. BioScience, 72(9), 851–870. https://doi.org/10.1093/biosci/biab124
Chen, L. (2020). Impacts of climate change on wind resources over North America based on NA-CORDEX. Renewable Energy, 153, 1428–1438. https://doi.org/10.1016/j.renene.2020.02.090
Chen, L. (2021). Uncertainties in solar radiation assessment in the United States using climate models. Climate Dynamics, 56(1), 665–678. https://doi.org/10.1007/s00382-020-05498-7
Chen, L., & Ford, T. W. (2021). Effects of 0.5 °C less global warming on climate extremes in the contiguous United States. Climate Dynamics, 57(1), 303–319. https://doi.org/10.1007/s00382-021-05717-9
Chidiac, S. E., Yao, L., & Liu, P. (2022). Climate change effects on heating and cooling demands of buildings in Canada. CivilEng, 3(2), 277–295. https://doi.org/10.3390/civileng3020017
Chilkoti, V., Bolisetti, T., & Balachandar, R. (2020). Investigating the role of hydrological model parameter uncertainties in future streamflow projections. Journal of Hydrologic Engineering, 25(10), 05020035. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001994
Cho, E., McCrary, R. R., & Jacobs, J. M. (2021). Future changes in snowpack, snowmelt, and runoff potential extremes over North America. Geophysical Research Letters, 48(22), e2021GL094985. https://doi.org/10.1029/2021GL094985
Ciarlo`, J. M., Coppola, E., Fantini, A., Giorgi, F., Gao, X., Tong, Y., Glazer, R. H., Torres Alavez, J. A., Sines, T., Pichelli, E., Raffaele, F., Das, S., Bukovsky, M., Ashfaq, M., Im, E.-S., Nguyen-Xuan, T., Teichmann, C., Remedio, A., Remke, T., … Jacob, D. (2021). A new spatially distributed added value index for regional climate models: The EURO-CORDEX and the CORDEX-CORE highest resolution ensembles. Climate Dynamics, 57(5), 1403–1424. https://doi.org/10.1007/s00382-020-05400-5
Cisneros-Pineda, A., Liu, J., Grogan, D., & Hertel, T. W. (2022). Linkages between flooding risk and economic damage over the continental united states [Preprint]. Research Square. https://doi.org/10.21203/rs.3.rs-1514227/v1
Coelho, G. D. A., Ferreira, C. M., Johnston, J., Kinter, J. L., Dollan, I. J., & Maggioni, V. (2022). Potential impacts of future extreme precipitation changes on flood engineering design across the contiguous united states. Water Resources Research, 58(4), e2021WR031432. https://doi.org/10.1029/2021WR031432
Cook, L. M., McGinnis, S., & Samaras, C. (2020). The effect of modeling choices on updating intensity-duration-frequency curves and stormwater infrastructure designs for climate change. Climatic Change, 159(2), 289–308. https://doi.org/10.1007/s10584-019-02649-6
Cook, L. M., VanBriesen, J. M., & Samaras, C. (2021). Using rainfall measures to evaluate hydrologic performance of green infrastructure systems under climate change. Sustainable and Resilient Infrastructure, 6(3–4), 156–180. https://doi.org/10.1080/23789689.2019.1681819
Cousineau, J., & Murphy, E. (2022). Numerical investigation of climate change effects on storm surges and extreme waves on Canada’s Pacific coast. Atmosphere, 13(2), 311. https://doi.org/10.3390/atmos13020311
Deen, T. A., Arain, M. A., Champagne, O., Chow-Fraser, P., Nagabhatla, N., & Martin-Hill, D. (2021). Evaluation of observed and projected extreme climate trends for decision making in Six Nations of the Grand River, Canada. Climate Services, 24, 100263. https://doi.org/10.1016/j.cliser.2021.100263
Delpla, I., Bouchard, C., Dorea, C., & Rodriguez, M. J. (2023). Assessment of rain event effects on source water quality degradation and subsequent water treatment operations. Science of the Total Environment, 866, 161085. https://doi.org/10.1016/j.scitotenv.2022.161085
Diaconescu, E. P., Gachon, P., Laprise, R., & Scinocca, J. F. (2016). Evaluation of precipitation indices over North America from various configurations of regional climate models. Atmosphere-Ocean, 54(4), 418–439. https://doi.org/10.1080/07055900.2016.1185005
Diaconescu, E. P., Mailhot, A., Brown, R., & Chaumont, D. (2018). Evaluation of CORDEX-Arctic daily precipitation and temperature-based climate indices over Canadian Arctic land areas. Climate Dynamics, 50(5–6), 2061–2085. https://doi.org/10.1007/s00382-017-3736-4
Diez-Sierra, J., Iturbide, M., Gutiérrez, J. M., Fernández, J., Milovac, J., Cofiño, A. S., Cimadevilla, E., Nikulin, G., Levavasseur, G., Kjellström, E., Bülow, K., Horányi, A., Brookshaw, A., García-Díez, M., Pérez, A., Baño-Medina, J., Ahrens, B., Alias, A., Ashfaq, M., … Zittis, G. (2022). The worldwide C3S CORDEX grand ensemble: A major contribution to assess regional climate change in the IPCC AR6 Atlas. Bulletin of the American Meteorological Society, 103(12), E2804–E2826. https://doi.org/10.1175/BAMS-D-22-0111.1
Dziubanski, D., & Franz, K. J. (2023). Projecting hydrologic change under land use and climate scenarios in an agricultural watershed using agent-based modeling. Frontiers in Water, 5, 1020080. https://doi.org/10.3389/frwa.2023.1020080
Emmanouil, S., Langousis, A., Nikolopoulos, E. I., & Anagnostou, E. N. (2023). Exploring the future of rainfall extremes over conus: The effects of high emission climate change trajectories on the intensity and frequency of rare precipitation events. Earth’s Future, 11(4), e2022EF003039. https://doi.org/10.1029/2022EF003039
Galmarini, S., Cannon, A. J., Ceglar, A., Christensen, O. B., De Noblet-Ducoudré, N., Dentener, F., Doblas-Reyes, F. J., Dosio, A., Gutierrez, J. M., Iturbide, M., Jury, M., Lange, S., Loukos, H., Maiorano, A., Maraun, D., McGinnis, S., Nikulin, G., Riccio, A., Sanchez, E., … Zampieri, M. (2019). Adjusting climate model bias for agricultural impact assessment: How to cut the mustard. Climate Services, 13, 65–69. https://doi.org/10.1016/j.cliser.2019.01.004
Ganguli, P., & Coulibaly, P. (2019). Assessment of future changes in intensity-duration-frequency curves for Southern Ontario using North American (NA)-CORDEX models with nonstationary methods. Journal of Hydrology: Regional Studies, 22, 100587. https://doi.org/10.1016/j.ejrh.2018.12.007
García-García, A., Cuesta-Valero, F. J., Beltrami, H., González-Rouco, F., García-Bustamante, E., & Finnis, J. (2020). Land surface model influence on the simulated climatologies of temperature and precipitation extremes in the WRF v3.9 model over North America. Geoscientific Model Development, 13(11), 5345–5366. https://doi.org/10.5194/gmd-13-5345-2020
Gibson, P. B., Waliser, D. E., Lee, H., Tian, B., & Massoud, E. (2019). Climate model evaluation in the presence of observational uncertainty: Precipitation indices over the contiguous United States. Journal of Hydrometeorology, 20(7), 1339–1357. https://doi.org/10.1175/JHM-D-18-0230.1
Grady, K. A., Chen, L., & Ford, T. W. (2021). Projected changes to spring and summer precipitation in the midwestern united states. Frontiers in Water, 3, 780333. https://doi.org/10.3389/frwa.2021.780333
Gupta, R., Bhattarai, R., Dokoohaki, H., Armstrong, S. D., Coppess, J. W., & Kalita, P. K. (2023). Sustainability of cover cropping practice with changing climate in Illinois. Journal of Environmental Management, 339, 117946. https://doi.org/10.1016/j.jenvman.2023.117946
Hughes, M., Swales, D., Scott, J. D., Alexander, M., Mahoney, K., McCrary, R. R., Cifelli, R., & Bukovsky, M. (2022). Changes in extreme integrated water vapor transport on the U.S. west coast in NA-CORDEX, and relationship to mountain and inland precipitation. Climate Dynamics, 59(3–4), 973–995. https://doi.org/10.1007/s00382-022-06168-6
Il Jeong, D., & Sushama, L. (2018). Rain-on-snow events over North America based on two Canadian regional climate models. Climate Dynamics, 50(1–2), 303–316. https://doi.org/10.1007/s00382-017-3609-x
John, A., Obeysekera, J., Sukop, M. C., & Troxler, T. (2022). Statewide extreme rainfall projections for Florida using downscaled climate data. World Environmental and Water Resources Congress 2022, 1279–1292. https://doi.org/10.1061/9780784484258.118
Karmalkar, A. V. (2018). Interpreting results from the NARCCAP and NA-CORDEX ensembles in the context of uncertainty in regional climate change projections. Bulletin of the American Meteorological Society, 99(10), 2093–2106. https://doi.org/10.1175/BAMS-D-17-0127.1
Khan, S. U., Ogden, N. H., Fazil, A. A., Gachon, P. H., Dueymes, G. U., Greer, A. L., & Ng, V. (2020). Current and projected distributions of Aedes aegypti and Ae. Albopictus in Canada and the U.S. Environmental Health Perspectives, 128(5), 057007. https://doi.org/10.1289/EHP5899
Kim, J. B., Jiang, Y., Hawkins, L. R., & Still, C. J. (2022). A comparison of multiple statistically downscaled climate change datasets for the conterminous USA. Environmental Research Communications, 4(12), 125005. https://doi.org/10.1088/2515-7620/aca3ee
Komurcu, M., Emanuel, K. A., Huber, M., & Acosta, R. P. (2018). High‐resolution climate projections for the northeastern United States using dynamical downscaling at convection‐permitting scales. Earth and Space Science, 5(11), 801–826. https://doi.org/10.1029/2018EA000426
Li, X., Li, Z., Huang, W., & Zhou, P. (2020). Performance of statistical and machine learning ensembles for daily temperature downscaling. Theoretical and Applied Climatology, 140(1–2), 571–588. https://doi.org/10.1007/s00704-020-03098-3
Li, X. Y., Li, Z., Zhang, Q. Q., Zhou, P. X., & Huang, W. (2019). Prediction of long-term near-surface temperature based on NA-CORDEX output. Journal of Environmental Informatics Letters, 2(1), 10–18. https://doi.org/10.3808/jeil.201900012
Lieber, E., Demers, I., Pabst, T., & Bresson, É. (2022). Simulating the effect of climate change on performance of a monolayer cover combined with an elevated water table placed on acid-generating mine tailings. Canadian Geotechnical Journal, 59(4), 558–568. https://doi.org/10.1139/cgj-2020-0622
Lopez‐Cantu, T., Prein, A. F., & Samaras, C. (2020). Uncertainties in future U.S. extreme precipitation from downscaled climate projections. Geophysical Research Letters, 47(9), e2019GL086797. https://doi.org/10.1029/2019GL086797
Lucas‐Picher, P., Lachance‐Cloutier, S., Arsenault, R., Poulin, A., Ricard, S., Turcotte, R., & Brissette, F. (2021). Will evolving climate conditions increase the risk of floods of the large US-Canada transboundary Richelieu River basin? JAWRA Journal of the American Water Resources Association, 57(1), 32–56. https://doi.org/10.1111/1752-1688.12891
Lucas-Picher, P., Laprise, R., & Winger, K. (2017). Evidence of added value in North American regional climate model hindcast simulations using ever-increasing horizontal resolutions. Climate Dynamics, 48(7–8), 2611–2633. https://doi.org/10.1007/s00382-016-3227-z
Lucas-Picher, P., Somot, S., Déqué, M., Decharme, B., & Alias, A. (2013). Evaluation of the regional climate model ALADIN to simulate the climate over North America in the CORDEX framework. Climate Dynamics, 41(5–6), 1117–1137. https://doi.org/10.1007/s00382-012-1613-8
Mahoney, K., Scott, J. D., Alexander, M., McCrary, R., Hughes, M., Swales, D., & Bukovsky, M. (2021). Cool season precipitation projections for California and the western United States in NA-CORDEX models. Climate Dynamics, 56(9–10), 3081–3102. https://doi.org/10.1007/s00382-021-05632-z
Mailhot, E., Music, B., Nadeau, D. F., Frigon, A., & Turcotte, R. (2019). Assessment of the Laurentian Great Lakes’ hydrological conditions in a changing climate. Climatic Change, 157(2), 243–259. https://doi.org/10.1007/s10584-019-02530-6
Markhali, S. P., Poulin, A., & Boucher, M.-A. (2022). Multi-scale flood simulations under climate change scenarios [Preprint]. ESS Open Archive. https://doi.org/10.22541/essoar.167065604.41308102/v1
Martel, J.-L., Mailhot, A., & Brissette, F. (2020). Global and regional projected changes in 100-yr subdaily, daily, and multiday precipitation extremes estimated from three large ensembles of climate simulations. Journal of Climate, 33(3), 1089–1103. https://doi.org/10.1175/JCLI-D-18-0764.1
Martynov, A., Laprise, R., Sushama, L., Winger, K., Šeparović, L., & Dugas, B. (2013). Reanalysis-driven climate simulation over CORDEX North America domain using the Canadian Regional Climate Model, version 5: Model performance evaluation. Climate Dynamics, 41(11–12), 2973–3005. https://doi.org/10.1007/s00382-013-1778-9
McClure, M. L., Hranac, C. R., Haase, C. G., McGinnis, S., Dickson, B. G., Hayman, D. T. S., McGuire, L. P., Lausen, C. L., Plowright, R. K., Fuller, N., & Olson, S. H. (2022). Projecting the compound effects of climate change and white-nose syndrome on North American bat species. Climate Change Ecology, 3, 100047. https://doi.org/10.1016/j.ecochg.2021.100047
McCrary, R. R., Mearns, L. O., Hughes, M., Biner, S., & Bukovsky, M. S. (2022). Projections of North American snow from NA-CORDEX and their uncertainties, with a focus on model resolution. Climatic Change, 170(3–4), 20. https://doi.org/10.1007/s10584-021-03294-8
McGinnis, S., Kessenich, L., Mearns, L., Cullen, A., Podschwit, H., & Bukovsky, M. (2023). Future regional increases in simultaneous large Western USA wildfires. International Journal of Wildland Fire. https://doi.org/10.1071/WF22107
McGinnis, S., & Mearns, L. (2021). Building a climate service for North America based on the NA-CORDEX data archive. Climate Services, 22, 100233. https://doi.org/10.1016/j.cliser.2021.100233
Meyer, J. D. D., Wang, S. ‐Y. S., Gillies, R. R., & Yoon, J. (2021). Evaluating NA‐CORDEX historical performance and future change of western U.S. precipitation patterns and modes of variability. International Journal of Climatology, 41(9), 4509–4532. https://doi.org/10.1002/joc.7083
Mittermeier, M., Bresson, É., Paquin, D., & Ludwig, R. (2022). A deep learning approach for the identification of long-duration mixed precipitation in Montréal (Canada). Atmosphere-Ocean, 60(5), 554–565. https://doi.org/10.1080/07055900.2021.1992341
Muhammad, A., Evenson, G. R., Unduche, F., & Stadnyk, T. A. (2020). Climate change impacts on reservoir inflow in the Prairie Pothole Region: A watershed model analysis. Water, 12(1), 271. https://doi.org/10.3390/w12010271
Nazarian, R. H., Vizzard, J. V., Agostino, C. P., & Lutsko, N. J. (2022). Projected changes in future extreme precipitation over the northeast United States in the NA-CORDEX ensemble. Journal of Applied Meteorology and Climatology, 61(11), 1649–1668. https://doi.org/10.1175/JAMC-D-22-0008.1
Oakley, N. S. (2021). A warming climate adds complexity to post‐fire hydrologic hazard planning. Earth’s Future, 9(7), e2021EF002149. https://doi.org/10.1029/2021EF002149
Ogden, N., & Gachon, P. (2019). Climate change and infectious diseases: What can we expect? Canada Communicable Disease Report, 45(4), 76–80. https://doi.org/10.14745/ccdr.v45i04a01
Picard, C. J., Winter, J. M., Cockburn, C., Hanrahan, J., Teale, N. G., Clemins, P. J., & Beckage, B. (2023). Twenty-first century increases in total and extreme precipitation across the Northeastern USA. Climatic Change, 176(6), 72. https://doi.org/10.1007/s10584-023-03545-w
Poan, E. D., Gachon, P., Laprise, R., Aider, R., & Dueymes, G. (2018). Investigating added value of regional climate modeling in North American winter storm track simulations. Climate Dynamics, 50(5–6), 1799–1818. https://doi.org/10.1007/s00382-017-3723-9
Porse, E., Poindexter, C., Carleton, C., & Stephens, M. (2023). Climate change risk and adaptation costs for stormwater management in California coastal parklands. Sustainable and Resilient Infrastructure, 8(3), 293–306. https://doi.org/10.1080/23789689.2021.1996811
Prein, A. F., Bukovsky, M. S., Mearns, L. O., Bruyère, C. L., & Done, J. M. (2019). Simulating North American weather types with regional climate models. Frontiers in Environmental Science, 7, 36. https://doi.org/10.3389/fenvs.2019.00036
Rastogi, D., Kao, S., & Ashfaq, M. (2022). How may the choice of downscaling techniques and meteorological reference observations affect future hydroclimate projections? Earth’s Future, 10(8), e2022EF002734. https://doi.org/10.1029/2022EF002734
Rendfrey, T. S., Bukovsky, M. S., McCrary, R. R., & Fuentes‐Franco, R. (2021). An assessment of tropical cyclones in North American CORDEX WRF simulations. Weather and Climate Extremes, 34, 100382. https://doi.org/10.1016/j.wace.2021.100382
Requena, A. I., Burn, D. H., & Coulibaly, P. (2019). Estimates of gridded relative changes in 24-h extreme rainfall intensities based on pooled frequency analysis. Journal of Hydrology, 577, 123940. https://doi.org/10.1016/j.jhydrol.2019.123940
Requena, A. I., Nguyen, T.-H., Burn, D. H., Coulibaly, P., & Nguyen, V.-T.-V. (2021). A temporal downscaling approach for sub-daily gridded extreme rainfall intensity estimation under climate change. Journal of Hydrology: Regional Studies, 35, 100811. https://doi.org/10.1016/j.ejrh.2021.100811
Rhoades, A. M., Jones, A. D., & Ullrich, P. A. (2018a). Assessing mountains as natural reservoirs with a multimetric framework. Earth’s Future, 6(9), 1221–1241. https://doi.org/10.1002/2017EF000789
Rhoades, A. M., Jones, A. D., & Ullrich, P. A. (2018b). The changing character of the California Sierra Nevada as a natural reservoir. Geophysical Research Letters, 45(23), 13008–13019. https://doi.org/10.1029/2018GL080308
Ricard, S., Lucas-Picher, P., Thiboult, A., & Anctil, F. (2023). Producing reliable hydrologic scenarios from raw climate model outputs without resorting to meteorological observations. Hydrology and Earth System Sciences, 27(12), 2375–2395. https://doi.org/10.5194/hess-27-2375-2023
Sagurova, I., Ludwig, A., Ogden, N. H., Pelcat, Y., Dueymes, G., & Gachon, P. (2019). Predicted northward expansion of the geographic range of the tick vector Amblyomma americanum in North America under future climate conditions. Environmental Health Perspectives, 127(10), 107014. https://doi.org/10.1289/EHP5668
Sakaguchi, K., Leung, L. R., Zarzycki, C. M., Jang, J., McGinnis, S., Harrop, B. E., Skamarock, W. C., Gettelman, A., Zhao, C., Gutowski, W. J., Leak, S., & Mearns, L. (2023). Technical descriptions of the experimental dynamical downscaling simulations over North America by the CAM–MPAS variable-resolution model. Geoscientific Model Development, 16(10), 3029–3081. https://doi.org/10.5194/gmd-16-3029-2023
Seiler, C., Zwiers, F. W., Hodges, K. I., & Scinocca, J. F. (2018). How does dynamical downscaling affect model biases and future projections of explosive extratropical cyclones along North America’s Atlantic coast? Climate Dynamics, 50(1–2), 677–692. https://doi.org/10.1007/s00382-017-3634-9
Šeparović, L., Alexandru, A., Laprise, R., Martynov, A., Sushama, L., Winger, K., Tete, K., & Valin, M. (2013). Present climate and climate change over North America as simulated by the fifth-generation Canadian regional climate model. Climate Dynamics, 41(11–12), 3167–3201. https://doi.org/10.1007/s00382-013-1737-5
Sharma, S., Lee, B. S., Nicholas, R. E., & Keller, K. (2021). A safety factor approach to designing urban infrastructure for dynamic conditions. Earth’s Future, 9(12), e2021EF002118. https://doi.org/10.1029/2021EF002118
Srivastava, A. K., Grotjahn, R., Ullrich, P. A., & Sadegh, M. (2021). Pooling data improves multimodel IDF estimates over median-based IDF estimates: Analysis over the Susquehanna and Florida. Journal of Hydrometeorology, 22(4), 971–995. https://doi.org/10.1175/JHM-D-20-0180.1
Srivastava, A. K., Grotjahn, R., Ullrich, P. A., & Zarzycki, C. (2022). Evaluation of precipitation indices in suites of dynamically and statistically downscaled regional climate models over Florida. Climate Dynamics, 58(5–6), 1587–1611. https://doi.org/10.1007/s00382-021-05980-w
Teets, A., Bailey, A. S., Hufkens, K., Ollinger, S., Schädel, C., Seyednasrollah, B., & Richardson, A. D. (2023). Early spring onset increases carbon uptake more than late fall senescence: Modeling future phenological change in a US northern deciduous forest. Oecologia, 201(1), 241–257. https://doi.org/10.1007/s00442-022-05296-4
Tian, C., Huang, G., Piwowar, J. M., Yeh, S.-C., Lu, C., Duan, R., & Ren, J. (2022). Stochastic RCM-driven cooling and heating energy demand analysis for residential building. Renewable and Sustainable Energy Reviews, 153, 111764. https://doi.org/10.1016/j.rser.2021.111764
Vaittinada Ayar, P., & Mailhot, A. (2021). Evolution of dry and wet spells under climate change over north‐eastern North America. Journal of Geophysical Research: Atmospheres, 126(5), e2020JD033740. https://doi.org/10.1029/2020JD033740
Wagner, A. M., Bennett, K. E., Liston, G. E., Hiemstra, C. A., & Cooley, D. (2021). Multiple indicators of extreme changes in snow-dominated streamflow regimes, Yakima River basin region, USA. Water, 13(19), 2608. https://doi.org/10.3390/w13192608
Wang, J., Liu, Z., Foster, I., Chang, W., Kettimuthu, R., & Kotamarthi, V. R. (2021). Fast and accurate learned multiresolution dynamical downscaling for precipitation. Geoscientific Model Development, 14(10), 6355–6372. https://doi.org/10.5194/gmd-14-6355-2021
Weidman, S. K., Delworth, T. L., Kapnick, S. B., & Cooke, W. F. (2021). The Alaskan summer 2019 extreme heat event: The role of anthropogenic forcing, and projections of the increasing risk of occurrence. Earth’s Future, 9(8), e2021EF002163. https://doi.org/10.1029/2021EF002163
Whan, K., & Zwiers, F. (2016). Evaluation of extreme rainfall and temperature over North America in CanRCM4 and CRCM5. Climate Dynamics, 46(11–12), 3821–3843. https://doi.org/10.1007/s00382-015-2807-7
Whan, K., & Zwiers, F. (2017). The impact of ENSO and the NAO on extreme winter precipitation in North America in observations and regional climate models. Climate Dynamics, 48(5–6), 1401–1411. https://doi.org/10.1007/s00382-016-3148-x
Whan, K., Zwiers, F., & Sillmann, J. (2016). The influence of atmospheric blocking on extreme winter minimum temperatures in North America. Journal of Climate, 29(12), 4361–4381. https://doi.org/10.1175/JCLI-D-15-0493.1
Wilkins, E. J., Akbar, H., Saley, T. C., Hager, R., Elkin, C. M., Belmont, P., Flint, C. G., & Smith, J. W. (2021). Climate change and Utah ski resorts: Impacts, perceptions, and adaptation strategies. Mountain Research and Development, 41(3), R12–R23. https://doi.org/10.1659/MRD-JOURNAL-D-20-00065.1
Wimhurst, J. J., & Greene, J. S. (2020). The influence of climate change on low‐level jet characteristics over the South‐Central Plains as simulated by CMIP5 models. International Journal of Climatology, 40(14), 6020–6038. https://doi.org/10.1002/joc.6563
Wright, D. B., Samaras, C., & Lopez-Cantu, T. (2021). Resilience to extreme rainfall starts with science. Bulletin of the American Meteorological Society, 102(4), E808–E813. https://doi.org/10.1175/BAMS-D-20-0267.1
Wu, S., Markus, M., Lorenz, D., Angel, J., & Grady, K. (2019). A comparative analysis of the historical accuracy of the point precipitation frequency estimates of four data sets and their projections for the Northeastern United States. Water, 11(6), 1279. https://doi.org/10.3390/w11061279
Xu, Y., Jones, A., & Rhoades, A. (2019). A quantitative method to decompose SWE differences between regional climate models and reanalysis datasets. Scientific Reports, 9(1), 16520. https://doi.org/10.1038/s41598-019-52880-5
Xu, Z., Chang, A., & Di Vittorio, A. (2022). Evaluating and projecting of climate extremes using a variable-resolution global climate model (VR-CESM). Weather and Climate Extremes, 38, 100496. https://doi.org/10.1016/j.wace.2022.100496
Xu, Z., Di Vittorio, A., Zhang, J., Rhoades, A., Xin, X., Xu, H., & Xiao, C. (2021). Evaluating variable‐resolution CESM over China and Western United States for use in water‐energy nexus and impacts modeling. Journal of Geophysical Research: Atmospheres, 126(15), e2020JD034361. https://doi.org/10.1029/2020JD034361
Zango, B.-S., Seidou, O., Sartaj, M., Nakhaei, N., & Stiles, K. (2022). Impacts of urbanization and climate change on water quantity and quality in the Carp River watershed. Journal of Water and Climate Change, 13(2), 786–816. https://doi.org/10.2166/wcc.2021.158
Zare, M., Azam, S., & Sauchyn, D. (2022). Impact of climate change on soil water content in southern Saskatchewan, Canada. Water, 14(12), 1920. https://doi.org/10.3390/w14121920
Zare, M., Azam, S., Sauchyn, D., & Basu, S. (2023). Assessment of meteorological and agricultural drought indices under climate change scenarios in the South Saskatchewan River Basin, Canada. Sustainability, 15(7), 5907. https://doi.org/10.3390/su15075907
Zhang, Y., Ayyub, B. M., & Fung, J. F. (2022). Projections of corrosion and deterioration of infrastructure in United States coasts under a changing climate. Resilient Cities and Structures, 1(1), 98–109. https://doi.org/10.1016/j.rcns.2022.04.004
Bunn, P. (2021). Application based assessments using regional atmospheric models over the western United States to inform mitigation strategies in a changing environment [Ph.D Dissertation, University of Arizona]. https://www.proquest.com/openview/2cbcea199eb721f5dba731190d8b1ec0
Chilkoti, V. (n.d.). Impacts of climate change on hydropower generation and developing adaptation measures through hydrologic modeling and multi-objective optimization [Ph.D Dissertation, University of Windsor]. https://www.proquest.com/openview/1bc1c18610d9b0e9b98115e1c175602b
Hadzi-Tosev, M. (2020). Predicting monthly precipitation in Ontario using a multi-model ensemble and the XGBoost algorithm [Master’s Thesis, McMaster University]. https://macsphere.mcmaster.ca/handle/11375/26132
Liu, Q. (2021). The influence of precipitation and temperature on GPP in a semi-arid grassland [Master’s Thesis, Duke University]. https://www.proquest.com/openview/1f64167db184358f7ab1780a261c7e6c
Que, Z. (2022). Evaluations of the environmental effects of controlled tile drainage on watershed and river using the improved SWAT and the QUAL2Kw under current and future climate regimes [Ph.D Thesis, University of Ottawa]. https://doi.org/10.20381/ruor-27386
Siavash, P. M. (2023). Multi-scale streamfow simulation [Ph.D. Thesis, École de technologie supérieure]. https://espace.etsmtl.ca/id/eprint/3237/
Teets, A. (2022). The phenology of aboveground tree growth and forest carbon cycling [Ph.D. Dissertation, Northern Arizona University]. https://www.proquest.com/openview/2f143eab2d3b808d50946edeb2feb2a5/
van Lustenburg Maas, E. D. (2020). Uncertainties in soil model projections [Ph.D. Dissertation, Ohio State University]. https://www.proquest.com/openview/f9023424a7806cb82ccc93ff680fb02a
Gutiérrez, J. M., Jones, R. G., Narisma, G. T., Alves, L. M., Amjad, M., Gorodetskaya, I. V., Grose, M., Klutse, N. A. B., Krakovska, S., Li, J., Martínez-Castro, D., Mearns, L. O., Mernild, S. H., Ngo-Duc, T., van den Hurk, B., & Yoon, J.-H. (2021). Atlas. In V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, & B. Zhou (Eds.), Climate Change 2021: The physical science basis: Working Group I contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (1st ed., pp. 1927–2058). Cambridge University Press. https://doi.org/10.1017/9781009157896.016
Hock, R., Rasul, G., Adler, C., Cáceres, B., Gruber, S., Hirabayashi, Y., Jackson, M., Kääb, A., Kang, S., Kutuzov, S., Milner, A., Molau, U., Morin, S., Orlove, B., & Steltzer, H. (2019). High Mountain Areas. In H.-O. Pörtner, D. C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, & N. M. Weyer (Eds.), IPCC special report on the ocean and cryosphere in a changing climate (pp. 131–202). Cambridge University Press. https://doi.org/10.1017/9781009157964
IPCC. (2021). Annex II: Models. In J. M. Gutiérrez & A.-M. Treguier (Eds.), Climate Change 2021: The physical science basis. Working Group I contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (1st ed.). Cambridge University Press. https://doi.org/10.1017/9781009157896.021
Olson, S. H., Crowley, D., Dickson, B. G., Dzal, Y. A., Fuller, N. W., Haase, C. G., Hayman, D. T. S., Hranac, C. R., Kunkel, E. L., Lausen, C. L., McGuire, L. P., McClure, M. L., Plowright, R. K., Silas, K. A., & Willis, C. K. R. (2021). Assessing white-nose syndrome in the context of non-stationary conditions in an advancing continental epidemic (RC-2633). Wildlife Conservation Society; Defense Technical Information Center. https://apps.dtic.mil/sti/citations/AD1189858
Barsugli, J., Alexander, M., Dewes, C., Dixon, K., McGinnis, S., Mearns, L., Nath, M.-J., Rangwala, I., & Smith, L. (n.d.). “Perfect Model” evaluation of statistical downscaling methods ESTCP atlas of results for CONUS. NOAA Physical Sciences Lab. https://psl.noaa.gov/models/estcp/
Bonnlander, B., McGinnis, S., Banihirwe, A., Nienhouse, E., & de la Beaujardière, J. (2021). NA-CORDEX cloud-optimized dataset (1.0) [Data set]. https://doi.org/https://doi.org/10.26024/9xkm-fp81
Gutiérrez, J. M., Jones, R. G., Narisma, G. T., Alves, L. M., Amjad, M., Gorodetskaya, I. V., Grose, M., Klutse, N. A. B., Krakovska, S., Li, J., Martínez-Castro, D., Mearns, L. O., Mernild, S. H., Ngo-Duc, T., van den Hurk, B., & Yoon, J.-H. (2021). Atlas Supplementary Material. In V. Masson-Delmotte, P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, & B. Zhou (Eds.), Climate Change 2021 – the physical science basis: Working Group I contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC Data Distribution Center. https://interactive-atlas.ipcc.ch/
Iturbide, M., Fernández, J., Gutiérrez, J.M., Bedia, J., Cimadevilla, E., Díez-Sierra, J., Manzanas, R., Casanueva, A., Baño-Medina, J., Milovac, J., Herrera, S., Cofiño, A.S., San Martín, D., García-Díez, M., Hauser, M., Huard, D., & Yelekci, Ö. (2021). Repository supporting the implementation of FAIR principles in the IPCC-WGI Atlas (v2.0-final). Zenodo. https://doi.org/10.5281/ZENODO.3691645
McGinnis, S., Mearns, L., & the NA-CORDEX Team. (2015). The NA-CORDEX Website; UCAR/NCAR. https://na-cordex.org/
Mearns, L., McGinnis, S., Korytina, D., Arritt, R., Biner, S., Bukovsky, M., Chang, H.-I., Christensen, O., Herzmann, D., Jiao, Y., Kharin, S., Lazare, M., Nikulin, G., Qian, M., Scinocca, J., Winger, K., Castro, C., Frigon, A., & Gutowski, W. (2017). The NA-CORDEX dataset (1.0) [Data set]. https://doi.org/https://doi.org/10.5065/D6SJ1JCH
Rendfrey, T. S., Bukovsky, M. S., & McGinnis, S. A. (2018). NA-CORDEX visualization collection [Data set]. https://doi.org/10.5065/90ZF-H771